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TD 10 : PRODUIT TENSORIEL ET REPRESENTATIONS DE GROUPES

Les exercices marqués d’'un seront, corrigés en TD, si le temps le permet.

Les exercices marqués d'un l ou d'un v sont & préparer pour le prochain TD, ils
seront corrigés en début de TD.

Soit K un corps. Jusqu’a l'exercice 3 inclus, tous les espaces vectoriels sont des K-espaces
vectoriels.

Exercice 1. (Produit tensoriel d’applications linéaires)
Soient E, E' et F, F’ des espaces vectoriels non nuls de dimension finie. On se donne des
applications linéaires u : £ — E' et v: F — F'.

1. Montrer que si V' C E est un sous-espace vectoriel de et W C F' est un sous-espace
vectoriel de F', alors V' ® W s’identifie a un sous-espace vectoriel de £ ® F'.

2. Montrer que, via I'identification de la question 1, Im(u ® v) = Im(u) ® Im(v). En déduire
que rg(u ® v) = rg(u) rg(v).
3. Montrer que u et v sont surjectives (resp. injectives) si et seulement si u ® v 'est.

4. Donner une formule générale pour ker(u ® v) en fonction de ker(u) et ker(v).

Exercice 2. (Carré symétrique et carré alterné)
Soit E un espace vectoriel de dimension finie. On définit le carré symétrique de £ comme
le quotient
Sym*(E) == E® E/Vect(z @y —y ® T)pyek,

et le carré alterné de E' comme le quotient
A (E):= E® E/Vect(r ® 1) 4cp.

On notera S(E x E) (resp. A(E x E)) les formes bilinéaires symétriques (resp. alternées)
p: ExXFE— K.

1. Montrer que 'on a des isomorphismes canoniques
Sym*(E)* =2 S(E x E) et A*E)* = A(E x E).
2. Pour 2, y € E, on note zy (resp. x A y) 'image de  ® y dans Sym?(E) (resp. A2(E)).
Donner des bases et les dimensions de Sym?(E) et A?(E).
3. On suppose dans cette question que car(K) # 2.
(a) Montrer que A*(E) = E® E/ Vect(x @ y + y @ &)z yek-
(b) On note 7: F® F — E ® E l'application linéaire telle que pour tous x, y € E, on
aT(r®y)=y®x Montrer que 'on a une décomposition

E ® E =ker(t — Idggr) ® ker(7 + ldggE).

En déduire que Sym?(E) 2 ker(7 — Idggg) et que A%(E) = ker(r + Idpgr).
On appelle ker(7 —Idggg) le sous-espace des tenseurs symétriques et ker(r +ldpgr)
le sous-espace des tenseurs antisymétriques.



4. On note K[Xy,...,X,]2 espace vectoriel des polynémes homogenes de degré 2 en les
variables X7, ..., X,. Montrer que si dim(£) = n, on a un isomorphisme

Sym?*(E*) & K[X1,..., X,

donné par un choix de base de F.

Exercice 3. (Produit tensoriel de formes quadratiques)
Soient Fy, Fy deux K-espaces vectoriels de dimension finie.

1. Soient ¢; € Q(FE)) et ¢o € Q(Es). On note ¢; et ¢o leurs formes polaires respectives.
Montrer qu’il existe une unique forme bilinéaire symétrique ¢ : (F; ® Ey)? — K telle que
pour tous z1, y1 € Eq, X9, Y2 € E,

A1 @ T2, Y1 ® Y2) = d1(x1, Y1) P2(22, Y2).

2. En déduire qu’il existe une unique forme quadratique g € Q(E; ® FE») telle que pour tous
1 € Fy, 9 € Fy, q(11 ® x2) = q1(71)g2(72). On notera cette forme quadratique ¢; ® go.

3. Soient eq, ey des base de F; et E5 respectivement. Exprimer la matrice de ¢; ® g2 dans la
base e; ® ey en fonctions de la matrice de ¢; dans la base e; et de la matrice de ¢, dans
la base e,.

4. Quel est le rang de ¢4 ® ¢ 7
5. On suppose q; et go non dégénérées. Quel est le discriminant de ¢; ® ¢o 7

6. On suppose que K = R. Exprimer la signature de ¢; ® g2 en fonction des signatures de
q1 et de gs.

Dans les prochains exercices, les espaces vectoriels sont sur le corps C des nombres com-
plexes.

Exercice 4. (Tordue d’une représentation par un caractere)
Soit (V, p) une représentation d’'un groupe G, et soit £ : G — C* un morphisme de groupes.
On définit une nouvelle représentation de G en posant

. G — GL(V)
P v clg)nlg).

Le couple (V, p°) est appelé la tordue par e de la représentation (V) p).
1. Vérifier que (V, pf) est bien une représentation de G.

2. Montrer que si (V, p) est irréductible, alors (V| pf) 'est aussi.

Exercice 5. (Représentations induite du quotient)
Soit G un groupe et H un sous-groupe distingué de G.

1. (a) Montrer que toute représentation p : G/H — GL(V') induit une représentation de p
de G.

(b) Montrer que si p est irréductible, alors p I'est aussi.

2. Réciproquement, soit p : G — GL(V) une représentation de G. Donner une condition
nécessaire et suffisante pour que p provienne d’une représentation de G/H.



Exercice 6. (Exemples de représentations du groupe symétrique)
Soit n > 2 un entier. On s’intéresse aux représentations du groupe symétrique G,,.

1. Quelle sont les représentations de degré 1 de G,, 7

T To-1(1)
En To=l(n)

Donner le morphisme p : S,, — GL,(C) associé a cette représentation.

2. On fait agir G,, sur C" par

3. Montrer que ’ensemble des points fixes de cette représentation est une droite D de C"
(et donc une sous-représentation irréductible).

4. On note H l'orthogonal de D pour le produit hermitien canonique. Montrer que

H = {(xi)i e C", En:xz = 0}

i=1
et que c’est une sous-représentation. On 'appelle la représentation standard de &,,.

5. On va montrer que la représentation standard est irréductible. On note (e;) la base cano-
nique de C"™.

(a) Soit V une sous-représentation non nulle de H. Soit x € V'\ {0}. Montrer qu'il existe
i, 7 € [1,n] tels que x; # z;. On pose T = (i j) € G,,.

(b) En faisant agir 7 sur x, montrer que e; — e; appartient a V.
(c¢) En déduire que pour tous k, £ € [1,n], k # L, e, —e, € V.
(d) En déduire que V = H et que H est irréductible.

6. Montrer que D et H sont les seules sous-représentations irréductibles de (C", p).

Exercice 7. (Représentations de &)
Soit (V, p) une représentation complexe de &3. On note 7 la transposition (1 2) et o le
3-cycle (1 2 3). On note aussi j une racine primitive 3°m¢ de I'unité.

1. Montrer que p(c) € GL(V) est diagonalisable de spectre inclus dans {1, j, 72}. On note
Vi = ker(p(o) —1d), V; = ker(p(o) — jId), et V;2 = ker(p(c) — j*1d).

2. Montrer que V; est stable par p(7), que p(7)(V;) C Vj2 et que p(7)(Vj2) C Vj.

3. En déduire que Vi et V; @ Vj2 sont deux sous-représentations de V.

4. On suppose que V est irréductible.
(a) Montrer que soit V' = Vj, soit V =V, @ V2.

(b) On suppose que V' = V. Montrer que dim(V') = 1, puis que soit p = 1, soit p = ¢ la
signature.

(c) On suppose que V' =V, @& V2. Montrer que dim(V;) = dim(Vj2) = 1. En déduire que
si W est une autre représentation irréductible de &3 telle que W = W; @ W2, alors
W =V en tant que représentations.

5. Faire la liste des représentations irréductibles de G3.

v Exercice 8. (Représentations d'un groupe abélien)
Soit GG un groupe fini. On considére uniquement les représentations complexes de G.

1. Soit (V, p) une représentation de G. Montrer que pour tout g € G, p(g) est diagonalisable.

2. Montrer que si G est abélien, alors les représentations irréductibles de G sont de degré 1.



3. Soit n > 1 un entier. Donner toutes les représentations irréductibles de G = Z/nZ.
4. On va montrer que réciproquement si toutes les représentations irréductibles de G sont
de degré 1, alors G est abélien.
(a) Soit V' un espace vectoriel de dimension n = #G. On fixe une base e = (ey) e de
V indexée par les éléments de G, et on fait agir G sur V de la maniere suivante :
‘v’g,heG, g - €ep = €Egp-
Cette représentation est appelée la représentation réguliére de GG. Montrer que cette
définition définit bien une représentation de G.

(b) Montrer que le morphisme p : G — GL(V) associée est injectif (i.e. que la représen-
tation est fidele).

(c) On suppose que toutes les représentations irréductibles de G sont de degré 1. Grace
au lemme de Maschke, construire un morphisme injectif de G dans le sous-groupe
de GL,(C) des matrices diagonales.

(d) En déduire que G est abélien.

W‘ Exercice 9. (Contre-exemple au lemme de Maschke)

Soient p un nombre premier, et K un corps de caractéristique p (c’est-a-dire que p-1x = Og).
On fait agir G = Z/pZ sur K? par
0. T\ _ (7 + ay '
Yy Yy

1. Montrer que cette action définit bien une représentation de GG de degré 2.
2. Ecrire le morphisme G' — GLy(K) correspondant & cette représentation.

3. Montrer que cette représentation ne peut pas se décomposer en somme directe de sous-
représentations irréductibles.

w‘ Exercice 10. (Contre-exemple au lemme de Schur)
0 1

Soit M = (_1 O) € GLy(R).

1. Montrer que M est d’ordre 4. En déduire une représentation réelle (R?, p) de G = Z/4Z.
2. Montrer que (V, p) est irréductible en tant que représentation réelle.

3. Montrer que Endg(R?) = R%

4. Que se passe-t-il si on considere (V) p) comme une représentation complexe ?

Exercice 11. (Incursion en dimension infinie)
Soit G un groupe et soit (V,p) une représentation irréductible de G, éventuellement de
dimension infinie.

1. Montrer que si G est fini alors (V, p) est nécessairement de dimension finie.
On suppose a partir de cette question que GG est au plus dénombrable.
2. Montrer que (V, p) est engendré par une famille au plus dénombrable.
3. Soit u € Endg(V). Montrer que pour tout v € V' \ {0}, u est déterminé par l'image de v.
4. En déduire que Endg (V) est engendré par une famille au plus dénombrable.
5. On suppose que pour tout A € C, u — AId est inversible.
(a) Construire un morphisme injectif de C-espaces vectoriels C(X) — Endg(V).
(b) Montrer que C(X) n’est pas engendré par une famille au plus dénombrable.
(c) En déduire qu’il existe \g € C tel que u — Ao Idy n’est pas inversible.
6. En déduire que u = \gIdy puis que Endg (V) = C.



