
ENS de Lyon Algèbre 1
L3 2023-2024

TD 10 : Produit tensoriel et représentations de groupes

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Les exercices marqués d’un
R.I.P.

ou d’un sont à préparer pour le prochain TD, ils
seront corrigés en début de TD.

Soit K un corps. Jusqu’à l’exercice 3 inclus, tous les espaces vectoriels sont des K-espaces
vectoriels.

Exercice 1. (Produit tensoriel d’applications linéaires)
Soient E, E ′ et F, F ′ des espaces vectoriels non nuls de dimension finie. On se donne des

applications linéaires u : E → E ′ et v : F → F ′.
1. Montrer que si V ⊂ E est un sous-espace vectoriel de E et W ⊂ F est un sous-espace

vectoriel de F , alors V ⊗ W s’identifie à un sous-espace vectoriel de E ⊗ F .
2. Montrer que, via l’identification de la question 1, Im(u ⊗ v) = Im(u) ⊗ Im(v). En déduire

que rg(u ⊗ v) = rg(u) rg(v).
3. Montrer que u et v sont surjectives (resp. injectives) si et seulement si u ⊗ v l’est.
4. Donner une formule générale pour ker(u ⊗ v) en fonction de ker(u) et ker(v).

Exercice 2. (Carré symétrique et carré alterné)
Soit E un espace vectoriel de dimension finie. On définit le carré symétrique de E comme

le quotient
Sym2(E) := E ⊗ E/ Vect(x ⊗ y − y ⊗ x)x,y∈E,

et le carré alterné de E comme le quotient

Λ2(E) := E ⊗ E/ Vect(x ⊗ x)x∈E.

On notera S(E × E) (resp. A(E × E)) les formes bilinéaires symétriques (resp. alternées)
ϕ : E × E → K.

1. Montrer que l’on a des isomorphismes canoniques

Sym2(E)∗ ∼= S(E × E) et Λ2(E)∗ ∼= A(E × E).

2. Pour x, y ∈ E, on note xy (resp. x ∧ y) l’image de x ⊗ y dans Sym2(E) (resp. Λ2(E)).
Donner des bases et les dimensions de Sym2(E) et Λ2(E).

3. On suppose dans cette question que car(K) ̸= 2.
(a) Montrer que Λ2(E) = E ⊗ E/ Vect(x ⊗ y + y ⊗ x)x,y∈E.
(b) On note τ : E ⊗ E → E ⊗ E l’application linéaire telle que pour tous x, y ∈ E, on

a τ(x ⊗ y) = y ⊗ x. Montrer que l’on a une décomposition

E ⊗ E = ker(τ − IdE⊗E) ⊕ ker(τ + IdE⊗E).

En déduire que Sym2(E) ∼= ker(τ − IdE⊗E) et que Λ2(E) ∼= ker(τ + IdE⊗E).
On appelle ker(τ − IdE⊗E) le sous-espace des tenseurs symétriques et ker(τ +IdE⊗E)
le sous-espace des tenseurs antisymétriques.
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4. On note K[X1, . . . , Xn]2 l’espace vectoriel des polynômes homogènes de degré 2 en les
variables X1, . . . , Xn. Montrer que si dim(E) = n, on a un isomorphisme

Sym2(E∗) ∼= K[X1, . . . , Xn]2

donné par un choix de base de E.

Exercice 3. (Produit tensoriel de formes quadratiques)
Soient E1, E2 deux K-espaces vectoriels de dimension finie.

1. Soient q1 ∈ Q(E1) et q2 ∈ Q(E2). On note ϕ1 et ϕ2 leurs formes polaires respectives.
Montrer qu’il existe une unique forme bilinéaire symétrique ϕ : (E1 ⊗ E2)2 → K telle que
pour tous x1, y1 ∈ E1, x2, y2 ∈ E2,

ϕ(x1 ⊗ x2, y1 ⊗ y2) = ϕ1(x1, y1)ϕ2(x2, y2).

2. En déduire qu’il existe une unique forme quadratique q ∈ Q(E1 ⊗ E2) telle que pour tous
x1 ∈ E1, x2 ∈ E2, q(x1 ⊗ x2) = q1(x1)q2(x2). On notera cette forme quadratique q1 ⊗ q2.

3. Soient e1, e2 des base de E1 et E2 respectivement. Exprimer la matrice de q1 ⊗ q2 dans la
base e1 ⊗ e2 en fonctions de la matrice de q1 dans la base e1 et de la matrice de q2 dans
la base e2.

4. Quel est le rang de q1 ⊗ q2 ?
5. On suppose q1 et q2 non dégénérées. Quel est le discriminant de q1 ⊗ q2 ?
6. On suppose que K = R. Exprimer la signature de q1 ⊗ q2 en fonction des signatures de

q1 et de q2.

Dans les prochains exercices, les espaces vectoriels sont sur le corps C des nombres com-
plexes.

Exercice 4. (Tordue d’une représentation par un caractère)
Soit (V, ρ) une représentation d’un groupe G, et soit ε : G → C× un morphisme de groupes.

On définit une nouvelle représentation de G en posant

ρε : G −→ GL(V )
g 7−→ ε(g)ρ(g).

Le couple (V, ρε) est appelé la tordue par ε de la représentation (V, ρ).
1. Vérifier que (V, ρε) est bien une représentation de G.
2. Montrer que si (V, ρ) est irréductible, alors (V, ρε) l’est aussi.

Exercice 5. (Représentations induite du quotient)
Soit G un groupe et H un sous-groupe distingué de G.

1. (a) Montrer que toute représentation ρ : G/H → GL(V ) induit une représentation de ρ̃
de G.

(b) Montrer que si ρ est irréductible, alors ρ̃ l’est aussi.
2. Réciproquement, soit ρ̃ : G → GL(V ) une représentation de G. Donner une condition

nécessaire et suffisante pour que ρ̃ provienne d’une représentation de G/H.
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Exercice 6. (Exemples de représentations du groupe symétrique)
Soit n ⩾ 2 un entier. On s’intéresse aux représentations du groupe symétrique Sn.

1. Quelle sont les représentations de degré 1 de Sn ?
2. On fait agir Sn sur Cn par

σ ·
( x1

...
xn

)
=
 xσ−1(1)

...
xσ−1(n)

 .

Donner le morphisme ρ : Sn → GLn(C) associé à cette représentation.
3. Montrer que l’ensemble des points fixes de cette représentation est une droite D de Cn

(et donc une sous-représentation irréductible).
4. On note H l’orthogonal de D pour le produit hermitien canonique. Montrer que

H =
{

(xi)i ∈ Cn,
n∑

i=1
xi = 0

}

et que c’est une sous-représentation. On l’appelle la représentation standard de Sn.
5. On va montrer que la représentation standard est irréductible. On note (ei) la base cano-

nique de Cn.
(a) Soit V une sous-représentation non nulle de H. Soit x ∈ V \{0}. Montrer qu’il existe

i, j ∈ J1, nK tels que xi ̸= xj. On pose τ = (i j) ∈ Sn.
(b) En faisant agir τ sur x, montrer que ei − ej appartient à V .
(c) En déduire que pour tous k, ℓ ∈ J1, nK, k ̸= ℓ, ek − eℓ ∈ V .
(d) En déduire que V = H et que H est irréductible.

6. Montrer que D et H sont les seules sous-représentations irréductibles de (Cn, ρ).

Exercice 7. (Représentations de S3)
Soit (V, ρ) une représentation complexe de S3. On note τ la transposition (1 2) et σ le

3-cycle (1 2 3). On note aussi j une racine primitive 3ième de l’unité.
1. Montrer que ρ(σ) ∈ GL(V ) est diagonalisable de spectre inclus dans {1, j, j2}. On note

V1 = ker(ρ(σ) − Id), Vj = ker(ρ(σ) − j Id), et Vj2 = ker(ρ(σ) − j2 Id).
2. Montrer que V1 est stable par ρ(τ), que ρ(τ)(Vj) ⊂ Vj2 et que ρ(τ)(Vj2) ⊂ Vj.
3. En déduire que V1 et Vj ⊕ Vj2 sont deux sous-représentations de V .
4. On suppose que V est irréductible.

(a) Montrer que soit V = V1, soit V = Vj ⊕ Vj2 .
(b) On suppose que V = V1. Montrer que dim(V ) = 1, puis que soit ρ = 1, soit ρ = ε la

signature.
(c) On suppose que V = Vj ⊕ Vj2 . Montrer que dim(Vj) = dim(Vj2) = 1. En déduire que

si W est une autre représentation irréductible de S3 telle que W = Wj ⊕ Wj2 , alors
W ∼= V en tant que représentations.

5. Faire la liste des représentations irréductibles de S3.

Exercice 8. (Représentations d’un groupe abélien)
Soit G un groupe fini. On considère uniquement les représentations complexes de G.

1. Soit (V, ρ) une représentation de G. Montrer que pour tout g ∈ G, ρ(g) est diagonalisable.
2. Montrer que si G est abélien, alors les représentations irréductibles de G sont de degré 1.
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3. Soit n ⩾ 1 un entier. Donner toutes les représentations irréductibles de G = Z/nZ.
4. On va montrer que réciproquement si toutes les représentations irréductibles de G sont

de degré 1, alors G est abélien.
(a) Soit V un espace vectoriel de dimension n = #G. On fixe une base e = (eg)g∈G de

V indexée par les éléments de G, et on fait agir G sur V de la manière suivante :
∀g, h ∈ G, g · eh = egh.

Cette représentation est appelée la représentation régulière de G. Montrer que cette
définition définit bien une représentation de G.

(b) Montrer que le morphisme ρ : G → GL(V ) associée est injectif (i.e. que la représen-
tation est fidèle).

(c) On suppose que toutes les représentations irréductibles de G sont de degré 1. Grâce
au lemme de Maschke, construire un morphisme injectif de G dans le sous-groupe
de GLn(C) des matrices diagonales.

(d) En déduire que G est abélien.

Exercice 9. (Contre-exemple au lemme de Maschke)
Soient p un nombre premier, et K un corps de caractéristique p (c’est-à-dire que p·1K = 0K).

On fait agir G = Z/pZ sur K2 par

a ·
(

x
y

)
=
(

x + ay
y

)
.

1. Montrer que cette action définit bien une représentation de G de degré 2.
2. Écrire le morphisme G → GL2(K) correspondant à cette représentation.
3. Montrer que cette représentation ne peut pas se décomposer en somme directe de sous-

représentations irréductibles.

Exercice 10. (Contre-exemple au lemme de Schur)

Soit M =
(

0 1
−1 0

)
∈ GL2(R).

1. Montrer que M est d’ordre 4. En déduire une représentation réelle (R2, ρ) de G = Z/4Z.
2. Montrer que (V, ρ) est irréductible en tant que représentation réelle.
3. Montrer que EndG(R2) ∼= R2.
4. Que se passe-t-il si on considère (V, ρ) comme une représentation complexe ?

Exercice 11. (Incursion en dimension infinie)
Soit G un groupe et soit (V, ρ) une représentation irréductible de G, éventuellement de

dimension infinie.
1. Montrer que si G est fini alors (V, ρ) est nécessairement de dimension finie.

On suppose à partir de cette question que G est au plus dénombrable.
2. Montrer que (V, ρ) est engendré par une famille au plus dénombrable.
3. Soit u ∈ EndG(V ). Montrer que pour tout v ∈ V \ {0}, u est déterminé par l’image de v.
4. En déduire que EndG(V ) est engendré par une famille au plus dénombrable.
5. On suppose que pour tout λ ∈ C, u − λ Id est inversible.

(a) Construire un morphisme injectif de C-espaces vectoriels C(X) → EndG(V ).
(b) Montrer que C(X) n’est pas engendré par une famille au plus dénombrable.
(c) En déduire qu’il existe λ0 ∈ C tel que u − λ0 IdV n’est pas inversible.

6. En déduire que u = λ0 IdV puis que EndG(V ) ∼= C.
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